一本書(shū)小說(shuō)閱讀網(wǎng)
當(dāng)前位置:首頁(yè)>資訊>我綁架了一個(gè)外星文明網(wǎng)盤(pán)

第5章 第一篇論文

小說(shuō):我綁架了一個(gè)外星文明作者:向南向東看時(shí)間:2024-10-18 16:00:03

  繼續(xù)加油!李默點(diǎn)開(kāi)了新任務(wù)發(fā)布。

  新任務(wù)發(fā)布!屏幕上騎馬武將又出現(xiàn)了。

  任務(wù):一個(gè)不會(huì)寫(xiě)論文的學(xué)霸不是一個(gè)好學(xué)霸,發(fā)表一篇論文吧。少年!

  任務(wù)說(shuō)明:請(qǐng)?jiān)谌我庖槐緦W(xué)術(shù)雜志或報(bào)紙上發(fā)表一篇學(xué)術(shù)論文。

  任務(wù)獎(jiǎng)勵(lì):3000積分,抽獎(jiǎng)一次。

  任務(wù)時(shí)限:十天

  寫(xiě)一篇數(shù)學(xué)論文?李默看著書(shū)桌上的數(shù)學(xué)難題集,解一道沒(méi)人解開(kāi)的數(shù)學(xué)題目是不是就可以寫(xiě)一篇論文了。

  可是在哪里發(fā)表呢?李默打開(kāi)手機(jī)撥號(hào),不懂就問(wèn)是李默以前身為學(xué)渣的覺(jué)悟。

  “張老師,你好,我是你的學(xué)生李默。我想問(wèn)一下,我想寫(xiě)一篇數(shù)學(xué)論文,不知道在哪里發(fā)表比較好。”

  李默打通了他的數(shù)學(xué)老師的電話。他曾聽(tīng)別的老師說(shuō)過(guò),張老師數(shù)學(xué)水平很高,只是不通人情世故才分到他們學(xué)校教書(shū)。

  “李...李默同學(xué),你好,你想發(fā)表什么...?”張老師還以為自己聽(tīng)錯(cuò)了,李默在他的印象里成績(jī)平平,怎么可能發(fā)表論文呢。

  “發(fā)表數(shù)學(xué)論文,我想問(wèn)一下老師,數(shù)學(xué)論文在哪里發(fā)表比較好?!崩钅种貜?fù)了一遍。

  “數(shù)學(xué)論文啊...,一般來(lái)說(shuō)《數(shù)學(xué)月刊》的讀者比較多,公信力也強(qiáng)一點(diǎn)。但是投稿難度很大。我覺(jué)得你發(fā)表在《中學(xué)生數(shù)學(xué)》上比較好,那上面科普類(lèi)的多一些,投稿難度也低一些?!睆埨蠋熃忉尩暮茉敿?xì)。

  “對(duì)了,你寫(xiě)的數(shù)學(xué)論文是哪方面的?”

  “哦...我還沒(méi)寫(xiě)呢,我沒(méi)投過(guò)稿,所以找老師你問(wèn)一下?!崩钅侠蠈?shí)實(shí)的回答。

  “沒(méi)寫(xiě)??李默!你們是不是在玩真心話大冒險(xiǎn)啊,老師的時(shí)間也是很寶貴的!”

  嘟...嘟...嘟...

  李默看著被張老師直接掛掉的電話有點(diǎn)發(fā)懵,他不知道自己怎么惹張老師生氣了。

  知道在哪里發(fā)表就好辦了。是學(xué)霸做最難的題,發(fā)最難發(fā)布的論文。目標(biāo)確定!《數(shù)學(xué)月刊》。

  李默拿出那本世界難題集,這本書(shū)是全世界所有難題的集合,包括已經(jīng)解決的還有未解決的,這本書(shū)是李默媽媽在他上小學(xué)的時(shí)候給他買(mǎi)的,之后就被束之高閣。

  翻開(kāi)扉頁(yè),序言中有著愛(ài)因斯坦的一段話——數(shù)學(xué)之所以比一切其它科學(xué)受到尊重,一個(gè)理由是因?yàn)樗拿}是絕對(duì)可靠和無(wú)可爭(zhēng)辯的,而其它的科學(xué)經(jīng)常處于被新發(fā)現(xiàn)的事實(shí)推翻的危險(xiǎn)?!瓟?shù)學(xué)之所以有高聲譽(yù),另一個(gè)理由就是數(shù)學(xué)使得自然科學(xué)實(shí)現(xiàn)定理化,給予自然科學(xué)某種程度的可靠性。

  數(shù)學(xué)之所以可以成為其他學(xué)科的根基,根本原因是數(shù)學(xué)的結(jié)果是絕對(duì)可靠和無(wú)可爭(zhēng)辯。難怪學(xué)習(xí)機(jī)系統(tǒng)需要我把數(shù)學(xué)等級(jí)先升到6級(jí)。

  目錄中排列著數(shù)學(xué)史上沒(méi)有被解決的問(wèn)題。

  1.NP完全問(wèn)題

  例:在一個(gè)周六的晚上,你參加了一個(gè)盛大的晚會(huì)。由于感到局促不安,你想知道這一大廳中是否有你已經(jīng)認(rèn)識(shí)的人。宴會(huì)的主人向你提議說(shuō),你一定認(rèn)識(shí)那位正在甜點(diǎn)盤(pán)附近角落的女士羅絲。不費(fèi)一秒鐘,你就能向那里掃視,并且發(fā)現(xiàn)宴會(huì)的主人是正確的。然而,如果沒(méi)有這樣的暗示,你就必須環(huán)顧整個(gè)大廳,一個(gè)個(gè)地審視每一個(gè)人,看是否有你認(rèn)識(shí)的人。

  。。。。。。。。。。。。。。

  生成問(wèn)題的一個(gè)解通常比驗(yàn)證一個(gè)給定的解時(shí)間花費(fèi)要多得多。這是這種一般現(xiàn)象的一個(gè)例子。與此類(lèi)似的是,如果某人告訴你,數(shù)13717421可以寫(xiě)成兩個(gè)較小的數(shù)的乘積,你可能不知道是否應(yīng)該相信他,但是如果他告訴你它可以分解為3607乘上3803,那么你就可以用一個(gè)袖珍計(jì)算器容易驗(yàn)證這是對(duì)的。

  。。。。。。。。。。。。。。。

  人們發(fā)現(xiàn),所有的完全多項(xiàng)式非確定性問(wèn)題,都可以轉(zhuǎn)換為一類(lèi)叫做滿足性問(wèn)題的邏輯運(yùn)算問(wèn)題。既然這類(lèi)問(wèn)題的所有可能答案,都可以在多項(xiàng)式時(shí)間內(nèi)計(jì)算,人們于是就猜想,是否這類(lèi)問(wèn)題,存在一個(gè)確定性算法,可以在多項(xiàng)式時(shí)間內(nèi),直接算出或是搜尋出正確的答案呢?這就是著名的NP=P?的猜想。不管我們編寫(xiě)程序是否靈巧,判定一個(gè)答案是可以很快利用內(nèi)部知識(shí)來(lái)驗(yàn)證,還是沒(méi)有這樣的提示而需要花費(fèi)大量時(shí)間來(lái)求解,被看作邏輯和計(jì)算機(jī)科學(xué)中最突出的問(wèn)題之一。它是斯蒂文·考克于1971年陳述的。

  。。。。。。。。。。。。。。。。。。。。。。。

  編程?邏輯運(yùn)算?計(jì)算機(jī)科學(xué)??

  李默有點(diǎn)看不明白,這里運(yùn)用的數(shù)學(xué)知識(shí)大部分他還沒(méi)有掌握。

  算了,看下一個(gè)問(wèn)題吧。

  BSD猜想

  2.龐加萊猜想,任何一個(gè)封閉的三維空間,只要它里面所有的封閉曲線都可以收縮成一點(diǎn),這個(gè)空間就一定是一個(gè)三維圓球

  。。。。。。。。。。。

  。。。。。。。。。。。

  這道題的題目都無(wú)法理解。。下一道。

  3.霍奇猜想斷言,對(duì)于所謂射影代數(shù)簇這種特別完美的空間類(lèi)型來(lái)說(shuō),稱作霍奇閉鏈的部件實(shí)際上是稱作代數(shù)閉鏈的幾何部件的(有理線性)組合。

  。。。。。。。。。。。

  。。。。。。。。。。。

  題目中的漢字他都認(rèn)識(shí),怎么連在一起就看不明白了呢?

  。。。。。。。。。。。

  。。。。。。。。。。。

  這一道題目不會(huì),這一道看不懂,這一道題的題目是什么意思??

  .........李默臉色難看起來(lái),想起來(lái)他數(shù)學(xué)還只有二級(jí),利用高中知識(shí)試圖解決一個(gè)未解難題真的太難了。

  。。。。。。。。。

  那些看不懂名字的題目直接放棄,只挑選高中數(shù)學(xué)范圍以內(nèi)的。李默加快了“翻頁(yè)”速度。

  終于,他找到了一個(gè)完全符合高中知識(shí)范圍的問(wèn)題。

  考拉茲猜想,又稱為3n+1猜想,角谷猜想,哈塞猜想,烏拉姆猜想或敘拉古猜想。

  是指對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1,如果它是偶數(shù),則對(duì)它除以2,如此循環(huán),最終都能夠得到1.

  考拉茲猜想,亦可以叫“奇偶?xì)w一猜想“.

  在1930年,德國(guó)漢堡大學(xué)的學(xué)生考拉茲,曾經(jīng)研究過(guò)這個(gè)猜想,因而得名。

  “正整數(shù)”,“偶數(shù)”,奇數(shù)。棒極了,很簡(jiǎn)單,完全看得明白。

  要想一個(gè)正整數(shù),設(shè)這個(gè)數(shù)為x接下來(lái)這個(gè)數(shù)倘若是奇數(shù),那么就將它乘三加一,即3x+1,倘若x為偶數(shù),那么就將它除以二,即x÷2,那么這個(gè)數(shù)最后一定會(huì)經(jīng)過(guò)4、2變?yōu)?。

  如果設(shè)想的數(shù)是3,那么就是3×3+1=10,10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1。

  李默拿筆驗(yàn)算了一下題目?jī)?nèi)容,完全正確,可是怎么證明呢?

  歸納法。。不行。

  利用定理直接證明。。。不行。

  唰。。唰。。唰。。

  一張紙。。兩張紙。。三張紙。。

  一小時(shí)。。兩小時(shí)。。三小時(shí)。。

  拿出一瓶精力咖啡,現(xiàn)在不是節(jié)約的時(shí)間。

  天亮了。。天黑了。。

  還是不行!還是不行!

  他有點(diǎn)氣餒,閉目養(yǎng)神,慢慢思考。

  看來(lái)常規(guī)的解題思路完全想不通。

  不是還有一滴靈感激發(fā)水嗎?

  小瓶子中只有一滴,滴入口中,有點(diǎn)甜。。

  好像沒(méi)什么用。。不會(huì)是假貨吧。

  “等等。。我想到了。?!保竽X中突然閃過(guò)一道靈光。

  n為偶數(shù),n/2為偶數(shù),……,一直除2到1;n為偶數(shù),n/2為偶數(shù),一直到n除以2的X次方,為奇數(shù)。我們把,n除以2的X次方表示為n,可以等同于n為奇數(shù)。(為偶數(shù)時(shí),數(shù)字一定在減?。?/p>

  。。。。。。。。。。。

  n為奇數(shù), n×2+n×1+1 2n+n+1,這個(gè)一定為偶數(shù),(2n+n+1)/2 n+(n+1)/2,這里又有兩種情況,為偶數(shù),為奇數(shù);為偶數(shù)就循環(huán)①(為偶數(shù)時(shí)數(shù)字一直在減?。?,一直到n+(n+1)/2為奇數(shù)。

  因?yàn)椋簄為奇數(shù),有且只有(n+1)/2為偶數(shù)1 n+(n+1)/2才能為奇數(shù)。

  n為奇數(shù)、n+(n+1)/2為奇數(shù),下面繼續(xù):

  n+(n+1)/2為奇數(shù),×2+×1+1 2n+n+1+n+(n+1)/2+1,2n+1+(n+1)/4為偶數(shù),除以2 2+×1+1 2n+n+1+n+(n+1)/2+1

  繼續(xù)兩種情況,為偶數(shù),為奇數(shù),為偶數(shù)就循環(huán)①、②,(反正偶數(shù)時(shí)數(shù)字在減?。?/p>

  ,一直到2n+1+(n+1)/4為奇數(shù)。變換為n+(n+1)+(n+1)/4

  因?yàn)椋簄為奇數(shù),n+1為偶數(shù),有且僅有(n+1)/4為偶數(shù),n+n+1+(n+1)/4才能為奇數(shù)。

  。。。。。。。。。。。。。。。。。。。。。。。。

  。。。。。。。。。。。。。。。。。。。。。。。。

  。。。。。。。。。。。。。。。。。。。。。。。。

  n+2(n+1)+(n+1)/4+(n+1)/8 為奇數(shù),×2+×1+1

  2n+4(n+1)+(n+1)/2+(n+1)/4+n+2(n+1)+(n+1)/4+(n+1)/8+1

  10n+8+(n+1)/8,為偶數(shù),除以2 5n+4+(n+1)/16

  n+4(n+1)+(n+1)/16

  無(wú)限循環(huán),一直到(n+1)/2得x次方=1

  至此證明完畢。

  每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1,如果它是偶數(shù),則對(duì)它除以2,如此循環(huán),最終都能夠得到1.這個(gè)猜想完全正確。

  李默放下手中的筆,閉上眼睛,他感到頭腦中智慧的風(fēng)暴在翻滾,靈魂深處有種力量在慢慢的覺(jué)醒。

  看了一下鬧鐘,他已經(jīng)74個(gè)小時(shí)沒(méi)合眼了。眼前一黑,暈倒在床上,彌留的意識(shí)“我還有論文沒(méi)寫(xiě)。。?!?/p>

手機(jī)上閱讀

點(diǎn)擊或掃描下載